
El análisis estructural necesario para las grandes construcciones de estructuras de hormigón armado en 1950 era una tarea formidable. Esto es un atributo a la profesión de ingeniería, y para Hardy Cross, que aquí existen tan pocos fallos. Cuando los ingenieros tienen que calcular los esfuerzos y deflexiones en un marco estáticamente indeterminado, ellos inevitablemente vuelven a lo que fue conocido como "Distribución de Momentos" o "Método de Hardy Cross". En el método de distribución de momentos, los momentos en los extremos fijos de los marcos son gradualmente distribuidos a los miembros adyacentes en un número de pasos tales que el sistema eventualmente alcanza su configuración de equilibrio natural. Sin embargo, el método era todavía una aproximación pero podía ser resuelto a ser muy cercano a la solución real.
El método de Hardy Cross es esencialmente el método de Jacobi aplicado a las fórmulas de desplazamiento de análisis estructural.
Ahora el método de distribución de momentos no es el más comúnmente usado porque las computadoras han cambiado la forma en que los ingenieros evalúan las estructuras y los programas de distribución de momentos son raramente creados hoy en día. El software de análisis estructural hoy en día está basado en el Método de Flexibilidad , Método matricial de la rigidez o Método de los Elementos Finitos (FEM por sus siglas en inglés).
Método de Cross para redes de agua
Otro método de Hardy Cross es famoso por modelar flujos de Red de abastecimiento de agua potable. Hasta décadas recientes, fue el método más común para resolver tales problemas.
El recibió numerosos honores. Entre ellos tuvo un grado Honorario de Maestro de Artes de la Universidad Yale , la medalla Lamme de la Sociedad Americana para Educación en Ingeniería (1944), la medalla Wason del Instituto Americano del Concreto (1935), y la medalla de oro del Instituto de Ingenieros Estructurales de Gran Bretaña (1959).
VIGAS HIPERESTÁTICAS. Método de Cross. Este método desarrollado por Hardy Cross en 1932, parte de una estructura ideal cuyos nodos están perfectamente rígidos, lo que obliga que para llegar a la estructura real es necesario realizar dos pasos: 1. Distribuir los momentos de desequilibrio que se presentan en cada nodo. 2. Estos momentos de desequilibrio distribuidos afectan el otro extremo de la barra.
Su cuantificación se hace a través de un factor de transporte. Al realizar este transporte se vuelve a desequilibrar la viga lo que obliga a realizar una nueva distribución. Este proceso termina cuando el momento distribuido, sea tan pequeño que no afecte el resultado del momento final. Secuela de cálculo:
• Se consideran perfectamente empotrados todos los apoyos y se calculan los momentos de empotramiento.
• Se calculan las rigideces para cada barra con la fórmula R=(4EI)/l; en caso de que todas las barras de la viga sean del mismo material la fórmula se podrá reducir a R=(4I)/l; si además de estos todas las barras tienen la misma sección podemos utilizar la fórmula R=4/l.
• Se calculan los factores de distribución por nodo y por barra a través de la fórmula fd= ri/Sri, que significa la rigidez de la barra i entre la suma de las rigideces de las barras que concurren a ese nodo. Para el caso de los extremos libremente apoyados o en cantiliber el factor de distribución es 1 y si es empotrado 0.
• Se hace la primera distribución multiplicando el momento desequilibrado por los factores de distribución de las barras que concurren a ese nodo, verificando que la suma de los momentos distribuidos sea igual al momento de desequilibrio. Cuando los momentos tengan el mismo signo, el momento desequilibrado se encuentra restando al mayor el menor, y cuando son de diferente signo se suman. A los momentos distribuidos en los nodos centrales se le coloca signo negativo (-) al menor y positivo (+) al mayor, en los extremos siempre se cambia el signo. e) Se realiza el primer transporte; los momentos distribuidos se multiplican por el factor de transporte ft= 0.5 para encontrar los momentos que se van a transmitir al otro extremo de la barra y siempre al transportarlo se le cambia el signo.
• Se repiten los dos pasos anteriores hasta que el momento distribuido sean menores del 10% de los momentos de empotramiento. Generalmente esto sucede en la 3a o 4a distribución.
• Los momentos finales se encontraran sumando todos los momentos distribuidos y transportados; verificando que el momento final de las barras que concurren al nodo sean iguales.
No hay comentarios:
Publicar un comentario