Buscar este blog

sábado, 5 de junio de 2010

CARRETERAS SOLARES


En un garaje de Idaho, lejos del rugido de la civilización, el ingeniero Scott Brusaw está construyendo un sueño llamado Carreteras Solares (Solar Roadways). El Departamento de Transportes de EEUU ha firmado con él con un contrato de 100.000 dólares y ha fijado una fecha, 12 febrero del 2010, para tener el listo el primer prototipo de panel solar que «servirá para revolucionar el modo en que nos movemos y conseguimos nuestra energía».

Scott Brusaw lleva soñando con las carreteras solares desde que jugaba al Scalextric de niño, pero la tecnología y los costes se interponían en su camino. Su punto de partida fue el cálculo que el experto en energía solar Nate Lewis lanzó hace tiempo: bastaría con instalar convertidores solares en el 1,7% del territorio nacional para satisfacer nuestra demanda energética. Esa misma proporción es la que cubre hoy por hoy la superficie asfaltada en EEUU, calentada a diario por el sol, esperando a que encontremos la manera de recoger la cosecha energética.
Experimentos pioneros

Mientras avanzan los experimentos como el del Instituto Politécnico de Worcester (WPI) para convertir el propio asfalto en 'colector' de sol y usar tuberías subterráneas para generar vapor y energía, Scott Busaw está desarrollando un concepto bastante más complejo, sobre la senda de «la gran convergencia entre la energía, el transporte y la infraestructura que se producirá en el futuro».

La base de sus carreteras solares son unos paneles de 30 por 30 centímetros, de apariencia no muy distinta a las placas fotovoltaicas. Los paneles constan básicamente de tres capas: la superficie está hecha de un material traslúcido, rugoso y de alta resistencia, para soportar el peso de los vehículos y permitir la tracción. La segunda capa es la electrónica, donde se absorbe y se almacena la energía, con células fotovoltaicas y diodos emisores de luz (LEDs) que permitirán iluminar o pintar la superficie de la carretera. La tercera capa servirá para distribuir la energía y albergar también los cables de fibra óptica para las comunicaciones.

Bushaw asegura que su visión será posible si se logra fabricar paneles a un coste medio de 5.000 dólares. Aunque el presupuesto total para reemplazar las carreteras de asfalto ascendería a 4.800 millones de dólares en Estados Unidos, el creador de Solar Roadways asegura que sus paneles tendrían una duración asegurada de 21 años y el precio final de sus carreteras se equipararía a las de asfalto.
Mismas prestaciones

El ingeniero eléctrico afirma que sus carreteras resistirán accidentes y serán inteligentes. Podrán generar calor para disolver la nieve y enviar mensajes a los automovilistas para hacer más fluido el tráfico. Contarán con aparcamientos y dispositivos para recargar los coches eléctricos. Según sus propias estimaciones, cada kilómetro y medio de carretera solar serviría para dar energía a 500 casas.

El plazo de entrega del primer panel será en algo menos de cinco meses. «El primer parking experimental con placas solares podría estar listo en poco más de un año», asegura Bushaw. «En tres o cuatro años podemos estar construyendo las primeras carreteras públicas en EEUU», añade.

La posibilidad de usar la red de carreteras para la captación de energía saltó hace dos años a la palestra en la reunión de la Sociedad Internacional de Pavimentos de Asfalto. Un estudio realizado por el Instituto Politécnico de Worcester concluyó en el «gran potencial del asfalto como colector solar».

Método de distribución de momentos


El Método de Distribución de Momentos (no confundir con redistribución de momentos) o método de Cross es un método de análisis estructural para vigas estáticamente indeterminadas y marcos, desarrollado por Hardy Cross. Fue publicado en 1930 en una revista de la ASCE. El método sólo calcula el efecto de los momentos flectores e ignora los efectos axiales y cortantes, lo cual es suficiente para fines prácticos. Desde 1930 hasta que las computadoras comenzaron a ser ampliamente usadas en el diseño y análisis de estructuras, el método de distribución de momentos fue el más ampliamente usado en la práctica.

En el método de distribución de momentos, cada articulación de la estructura a ser analizada, es fijada a fin de desarrollar los Momentos en los Extremos Fijos. Después cada articulación fija es secuencialmente liberada y el momento en el extremo fijo (el cual al momento de ser liberado no está en equilibrio) son distribuidos a miembros adyacentes hasta que el Equilibrio es alcanzado. El método de distribución de momentos en términos matemáticos puede ser demostrado como el proceso de resolver una serie de sistemas de ecuaciones por medio de iteración.

El método de distribución de momentos cae dentro de la categoría del Método de Desplazamiento de análisis estructural.

Implementación

En disposición de aplicar el método de distribución de momentos para analizar una estructura, lo siguiente debe ser considerado.

Momentos de empotramiento en extremos fijos


Momentos de empotramiento en extremos fijos son los momentos producidos al extremo del miembro por cargas externas cuando las juntas están fijas.

Rigidez a la Flexión

La Rigidez a la Flexión (EI/L) de un miembro es representada como el producto del Módulo de Elasticidad (E) y el Segundo momento de área, también conocido como Momento de Inercia (I) dividido por la longitud (L) del miembro, que es necesaria en el método de distribución de momentos, no es el valor exacto pero es la Razón aritmética de rigidez de flexión de todos los miembros.

Factores de Distribución


Los factores de distribución pueden ser definidos como las proporciones de los momentos no balanceados llevados por cada uno de los miembros.

Factores de Acarreo (Transporte)

Los momentos no balanceados, son llevados sobre el otro extremo del miembro cuando la junta es liberada. La razón de momento acarreado sobre el otro extremo, al momento en el extremo fijo del extremo inicial es el factor de acarreo.

Un momento actuando en sentido horario es considerado positivo. Esto difiere de la [convención de signos] usual en ingeniería, la cual emplea un sistema de coordenadas cartesianas con el eje positivo X a la derecha y el eje positivo Y hacia arriba, resultando en momentos positivos sobre el eje Z siendo antihorarios.

Estructuras de Marcos

Estructuras de marcos con o sin sidesway pueden ser analizadas utilizando el método de distribución de momentos.

Ejemplo:

La viga estáticamente indeterminada mostrada en la figura sera analizada.

* Miembros AB, BC, CD tienen la misma longitud L = 10 \ m .
* Las rigideces a Flexion son EI, 2EI, EI respectivamente.
* Cargas concentradas de magnitud udl = 10 \ kN actúan a una distancia a = 3 \ m desde el soporte A.
* Carga uniforme de intensidad q = 1 \ kN/m actúa en BC.
* Miembro CD está cargado a la mitad de su claro con una carga concentrada de magnitud P = 10 \ kN .

En los siguientes cálculos, los momentos antihorarios son positivos.

Momentos en Extremos Fijos [editar]

M _{AB} ^f = \frac{Pb^2a }{L^2} = \frac{10 \times 7^2 \times 3}{10^2} = - 14.700 \ kN\cdot m
M _{BA} ^f = - \frac{Pa^2b}{L^2} = - \frac{10 \times 3^2 \times 7}{10^2} = + 6.300 \ kN\cdot m
M _{BC} ^f = \frac{qL^2}{12} = \frac{1 \times 10^2}{12} = - 8.333 \ kN\cdot m
M _{CB} ^f = - \frac{qL^2}{12} = - \frac{1 \times 10^2}{12} = + 8.333 \ kN\cdot m
M _{CD} ^f = \frac{PL}{8} = \frac{10 \times 10}{8} = - 12.500 \ kN\cdot m
M _{DC} ^f = - \frac{PL}{8} = - \frac{10 \times 10}{8} = + 12.500 \ kN\cdot m

Factores de Distribución [editar]

D_{BA} = \frac{\frac{3EI}{L}}{\frac{3EI}{L}+\frac{4\times 2EI}{L}} = \frac{\frac{3}{10}}{\frac{3}{10}+\frac{8}{10}} = 0.2727
D_{BC} = \frac{\frac{4\times 2EI}{L}}{\frac{3EI}{L}+\frac{4\times 2EI}{L}} = \frac{\frac{8}{10}}{\frac{3}{10}+\frac{8}{10}} = 0.7273
D_{CB} = \frac{\frac{4\times 2EI}{L}}{\frac{4\times 2EI}{L}+\frac{4EI}{L}} = \frac{\frac{8}{10}}{\frac{8}{10}+\frac{4}{10}} = 0.6667
D_{CD} = \frac{\frac{4EI}{L}}{\frac{4\times 2EI}{L}+\frac{4EI}{L}} = \frac{\frac{4}{10}}{\frac{8}{10}+\frac{4}{10}} = 0.3333

Los factores de distribución de las juntas A y D son DAB = DDC = 1.
Factores de Acarreo (Transporte) [editar]

Los factores de acarreo son \frac{1}{2} , excepto para el factor de acarreo desde D (soporte fijo) a C el cual es cero.
Distribución de Momentos [editar]
MomentDistributionMethod2.jpg
Articulación A Articulación B Articulación C Articulación D
Factores de Distribución 0 1 0.2727 0.7273 0.6667 0.3333 0 0
Momentos en Extremos Fijos 14.700 -6.300 8.333 -8.333 12.500 -12.500
Paso 1 -14.700 → -7.350
Paso 2 1.450 3.867 → 1.934
Paso 3 -2.034 ← -4.067 -2.034 → -1.017
Paso 4 0.555 1.479 → 0.739
Paso 5 -0.246 ← -0.493 -0.246 → -0.123
Paso 6 0.067 0.179 → 0.090
Paso 7 -0.030 ← -0.060 -0.030 → -0.015
Paso 8 0.008 0.022 → 0.011
Paso 9 -0.004 ← -0.007 -0.004 → -0.002
Paso 10 0.001 0.003
Suma de Momentos 0 -11.569 11.569 -10.186 10.186 -13.657

Números en gris son momentos balanceados; flechas ( → / ← ) representan el acarreo de momento desde un extremo al otro extremo de un miembro.
Resultados [editar]

* Momentos en articulaciones, determinados por el método de distribución de momentos.

M_A = 0 \ kN \cdot m
M_B = -11.569 \ kN \cdot m
M_C = -10.186 \ kN \cdot m
M_D = -13.657 \ kN \cdot m
La convención de signos usual en ingeniería es usada aquí, i.e. Los momentos positivos causan elongación en la parte inferior de un elemento de viga.

Para propósitos de comparación, los siguientes son los resultados generados, usando un Método de Matriz. Nota que en el análisis superior, el proceso iterativo fue llevado a >0.01 de precisión. El echo de que el resultado de análisis de matriz y el resultado de análisis de distribución de momentos iguale a 0.001 de precisión es mera coincidencia.

* Momentos en articulaciones determinados por el método de matriz

M_A = 0 \ kN \cdot m
M_B = -11.569 \ kN \cdot m
M_C = -10.186 \ kN \cdot m
M_D = -13.657 \ kN \cdot m

Los diagramas completos de cortante y momento flextor son como sigue. Nota que el método de distribución de momentos solo determina los momentos en las juntas. Desarrollando diagramas de momentos flextores completos requiere de cálculos adicionales usando los momentos determinados en las articulaciones y el equilibrio interno de la sección.

* DFC y DMF

Método de Cross para estructuras



El análisis estructural necesario para las grandes construcciones de estructuras de hormigón armado en 1950 era una tarea formidable. Esto es un atributo a la profesión de ingeniería, y para Hardy Cross, que aquí existen tan pocos fallos. Cuando los ingenieros tienen que calcular los esfuerzos y deflexiones en un marco estáticamente indeterminado, ellos inevitablemente vuelven a lo que fue conocido como "Distribución de Momentos" o "Método de Hardy Cross". En el método de distribución de momentos, los momentos en los extremos fijos de los marcos son gradualmente distribuidos a los miembros adyacentes en un número de pasos tales que el sistema eventualmente alcanza su configuración de equilibrio natural. Sin embargo, el método era todavía una aproximación pero podía ser resuelto a ser muy cercano a la solución real.
El método de Hardy Cross es esencialmente el método de Jacobi aplicado a las fórmulas de desplazamiento de análisis estructural.
Ahora el método de distribución de momentos no es el más comúnmente usado porque las computadoras han cambiado la forma en que los ingenieros evalúan las estructuras y los programas de distribución de momentos son raramente creados hoy en día. El software de análisis estructural hoy en día está basado en el Método de Flexibilidad , Método matricial de la rigidez o Método de los Elementos Finitos (FEM por sus siglas en inglés).
Método de Cross para redes de agua
Otro método de Hardy Cross es famoso por modelar flujos de Red de abastecimiento de agua potable. Hasta décadas recientes, fue el método más común para resolver tales problemas.
El recibió numerosos honores. Entre ellos tuvo un grado Honorario de Maestro de Artes de la Universidad Yale , la medalla Lamme de la Sociedad Americana para Educación en Ingeniería (1944), la medalla Wason del Instituto Americano del Concreto (1935), y la medalla de oro del Instituto de Ingenieros Estructurales de Gran Bretaña (1959).
VIGAS HIPERESTÁTICAS. Método de Cross. Este método desarrollado por Hardy Cross en 1932, parte de una estructura ideal cuyos nodos están perfectamente rígidos, lo que obliga que para llegar a la estructura real es necesario realizar dos pasos: 1. Distribuir los momentos de desequilibrio que se presentan en cada nodo. 2. Estos momentos de desequilibrio distribuidos afectan el otro extremo de la barra.

Su cuantificación se hace a través de un factor de transporte. Al realizar este transporte se vuelve a desequilibrar la viga lo que obliga a realizar una nueva distribución. Este proceso termina cuando el momento distribuido, sea tan pequeño que no afecte el resultado del momento final. Secuela de cálculo:
• Se consideran perfectamente empotrados todos los apoyos y se calculan los momentos de empotramiento.
• Se calculan las rigideces para cada barra con la fórmula R=(4EI)/l; en caso de que todas las barras de la viga sean del mismo material la fórmula se podrá reducir a R=(4I)/l; si además de estos todas las barras tienen la misma sección podemos utilizar la fórmula R=4/l.
• Se calculan los factores de distribución por nodo y por barra a través de la fórmula fd= ri/Sri, que significa la rigidez de la barra i entre la suma de las rigideces de las barras que concurren a ese nodo. Para el caso de los extremos libremente apoyados o en cantiliber el factor de distribución es 1 y si es empotrado 0.
• Se hace la primera distribución multiplicando el momento desequilibrado por los factores de distribución de las barras que concurren a ese nodo, verificando que la suma de los momentos distribuidos sea igual al momento de desequilibrio. Cuando los momentos tengan el mismo signo, el momento desequilibrado se encuentra restando al mayor el menor, y cuando son de diferente signo se suman. A los momentos distribuidos en los nodos centrales se le coloca signo negativo (-) al menor y positivo (+) al mayor, en los extremos siempre se cambia el signo. e) Se realiza el primer transporte; los momentos distribuidos se multiplican por el factor de transporte ft= 0.5 para encontrar los momentos que se van a transmitir al otro extremo de la barra y siempre al transportarlo se le cambia el signo.
• Se repiten los dos pasos anteriores hasta que el momento distribuido sean menores del 10% de los momentos de empotramiento. Generalmente esto sucede en la 3a o 4a distribución.
• Los momentos finales se encontraran sumando todos los momentos distribuidos y transportados; verificando que el momento final de las barras que concurren al nodo sean iguales.